Animato – An Improved Animation System for Blender
Joshua Leung
aligorith@gmail.com

January 2009

Blender’s Animation System has been showing its age and deficiencies recently, as the overall complexity and flexibility brought about during the last few years as a result of its Open-Sourcing, the growth spurts from developments necessary for the successful completion of the Open Movie projects (the ‘Orange’ and ‘Peach’ projects) and the Open Game project (‘Apricot’), have exceeded the simplistic system that was more than sufficient for an in-house software for NeoGeo back in 1994.
In addition to the increased stresses on the basic architecture – which were only made worse by the somewhat hackish implementation of the Action/NLA/Constraints systems based on the system used by Hash’s Animation:Master – the increasing complexity of Blender has led to a snowball effect in the complexity of features demanded by the user-base. The most notable of these, the “everything is animateable” idiom, was not feasible to be able to have in the old system, which was based on a set of fixed defines divided into ID-datablock and ‘fake’ datablock groupings. Although this system works quite well when there are only a few ‘static’ settings available (which were grouped directly in ID-datablocks), the inadequacies of such a system become apparent when the number of settings increases, and dynamic data (i.e. ID-Properties, Constraints, Modifiers, Nodes, and also Bones/Pose-Channels) becomes more widely used.
Furthermore, there were some legacy hacks used to solve some specific production bottleneck at the time, which have been causing various usability issues. For instance, rotation curves (for objects) had their units divided by 10 in order to fit on the same axis scale as other animation curves, however, this resulted in many inconsistencies in the means for user interaction to occur. Another problem was the way that bitflag/boolean values (such as Object→Layers or Material→Mode) were exposed, with the raw shorts/ints that such values were stored in being directly exposed to the user, presenting a confusing interface for the animator. This was due to more of a technical limitation than a
The “Animato” system aims to rectify these issues, by addressing several of the main issues here in the following ways:

1) Data access is performed through the RNA (i.e. Data-API) system, which provides a method for accessing all user-editable settings in the same way as the UI and PyAPI allow, thus allowing “everything is animateable” (avoiding problems previous with accessing dynamic data). A number of benefits can be derived immediately from such a step, the details of which will be explored further in this document.
2) The complexity in the data layout of the old system is simplified through the introduction of a new container (AnimData) which gets stored in each major ID-block which can be animated, and the unification of IPO’s and Actions into a single type for the reuse of animation.
3) The evaluation code has been streamlined to reduce the need for various data to be calculated manually and multiple times by individual modules. Part of this stems from the decision to enforce strict separate of animation data from drivers, which allows rigs in a production environment to be more ‘animator proof’ and also more flexible.

4) Animation editors have been converted to use a data abstraction system, initially designed for use by the Action Editor only, which makes it easier to write tools which modify animation data (i.e. keyframes) without worrying about where the data comes from. This removes the restrictions regarding editing animation from multiple sources simultaneously, which was a serious limitation for animators working in older versions of Blender. In a framework where “everything is animateable”, it is certainly advanteous to be able to animate multiple settings at once.
Overview of new data types
Figure 1 - The following diagram illustrates the new (and hopefully simpler) data-layout which should allow power-users to be even more productive while still providing a relatively straightforward environment for the casual animator. It should be noted that in this diagram, the data has been laid out in evaluation order.

[image: image1]
Evaluation Pipeline

Figure 2 - The following diagram provides an overview of the evaluation pipeline (some parts have been simplified for diagramming purposes).

[image: image2]
Evaluation Scenarios
In the diagram above, it can be seen that Animation Evaluation can be divided into two broad categories based upon the ‘events’ or state changes which trigger recalculation of various settings and/or data: “frame changed” and “data changed” situations.
The ‘Frame Changed’ situation occurs whenever the ‘global’ time/frame changes as a direct result of some user action (animation playback, scrubbing, frame-stepping), or via some automated systems (animation playback again since it uses an automated timer, animation rendering). In addition to these clear-cut cases, Blender’s file read/write system also requires such a step, as the global Main database is altered.

The ‘Data Changed’ situation occurs whenever the user edits some setting(s), and dependant data must be updated. Currently, the role of the Dependency Graph is still to merely tag data that needs to be recalculated as a result of the user changes, and to order the data (Objects, Pose Channels, and now Drivers as well) so that lagging does not occur. Despite this, lagging is not totally avoided for some setups still, due to the simplistic sort+tag approach used by the Depsgraph, which works best for Object-based data only. Perhaps an execution-graph style (a la ‘nodes’) might work better for resolving such situations, but such work is best left till a later stage.

However, for the time being, data-changed is restricted to the Object-based data (i.e. object transforms/settings, geometry, surfacing/shading of geometry, etc.) due to legacy reasons. Ultimately, such a bias should be eliminated, as it leads to Scene-based – i.e. world, sequencer, compositing – animateable data to become second-class animation citizens as in the old system. Resolving this situation in the most elegant way requires more thought, as there are some sizeable technical complexities that would need to be considered. Such a refactoring of the dependency graph is a sizeable project in itself, so for the time being, this restriction will have to stay in place.

Rationale for Evaluation Orders

The evaluation pipeline presented here has been designed in such a way that there should be little or (ideally) no need to recalculate any animation data, or use special hacks to try and prevent animation data from destroying unkeyframed poses or preventing settings from being edited. There are currently some provisions for ‘overrides’, which act like drivers except they only store a single value temporarily to ‘override’ the effects of the animation system until a frame change, to work around these issues should they arise. However, since the likelihood of this occurring isn’t too great for now, overrides are largely unimplemented for now.
Frame Changed Evaluation
Therefore, all animation data that involves no user-defined dependencies (i.e. NLA and Action data only) are evaluated during the ‘Frame Changed’ situation. By doing this all in one step, we can be sure that all settings ‘should’ have the right values to be used for driver evaluation. The order in which the datablocks is evaluated is not a random exercise though, even though the values of the curves are independent of others.

We must ensure that all datablocks which are likely to be ‘overriden’ by some ‘higher up’ user (i.e. Texture settings can be overridden by the Material, Lamp, or World ID-block which uses it, as result of the flexibility afforded by RNA-paths) will be overridden as intended by the user. Situations where this ability is useful include animating settings of some objects within a group instance, and the aforementioned Textures case. However, it is worth noting here that this does create a bit of an issue if more than one Object/Material/etc. uses some datablock, but they use the data in different ways. It is assumed for now that such cases are not overly common. For future work, it would interesting to explore some more advanced methods of supporting ‘proxyies’ and ‘instances’ of existing data, with per-instance editable settings.
Such ‘independent’ animation should only be executed for the ‘Frame Changed’ situation and never for the ‘Data Changed’. The primary reason that this is done, is to ensure that we don’t have to ever worry whether the values of various settings are correct for the given time when evaluating drivers. By doing so, we gain the benefits of the driver/animation data storage-level separation, which was aimed at avoiding the situation where the constraint influences of bones couldn’t be animated by other bones in the same armature because the animation/driver evaluation was all mixed up but the depsgraph was not aware of it (resulting in the ‘local IPO’s for constraints’ hack, which was never exposed too clearly).

Another reason why this is done, is so that we do not need locking hacks while editing settings which are animated, as the animation data will not be written over the values being edited until a frame change. Thus, such locking hacks are not needed. However, when we have the possibility to animate ‘on top’ of drivers (something most ‘big packages’ lack it seems, but which there are rudimentary provisions and/or notes for in the current code), it may become necessary to use overrides to resolve any issues that arise there.
In addition to calculating all independent animation data for the ‘Frame Changed’ situation, drivers and dependent data (which are handled through the ‘Data Changed’ situation) also need to be re-evaluated for the new frame, since some of the values the drivers were using as targets would have changed.
Data Changed Evaluation
The ‘Data Changed’ evaluation is not as straightforward as the ‘Frame Changed’ one, since there are a few more provisions that we need to make. Also, some ‘unfortunate’ compromises have been made to avoid having to do a complete recode of the dependency system yet.

Currently, drivers are not executed in any special pass (like an execution/node graph based on dependencies), so there are still a few setups which are not possible yet. The way they are evaluated is per Object/Object-Datablock that is executed (* this really doesn’t work well though).

Drivers

F-Curve

An F-Curve defines the animation for a single property. The property that gets animated is accessed using RNA by tracing the F-Curves’ “RNA-Path” info from the ID-block that the AnimData is attached to.

An F-Curve may have its values defined as either keyframes (BezTriples, easy to edit), or samples (FPoints, not easily editable)

Each F-Curve may have an F-Curve Modifier to perform procedural value modifications/creation (i.e. curve generator, noise, envelope, cycling, etc.)

etc.

F-Curve

�

ID: Action

AnimData is the generic container for all the animation data available for some ID-datablock

AnimData

Driver (F-Curve)

Driver (F-Curve)

etc.

Drivers are simply F-Curves which are stored separate from normal (animation) F-Curves, as their value depends on that of another setting (limited to Object/Bone transforms for now).

As Drivers are part of the dependency system, they are evaluated after animation F-Curves, when the values they depend on should have been set already. The Dependency Graph (depsgraph) can tag and orders drivers such that no lagging occurs.

NLA Data

NLA data is organised into ‘Tracks’, which are analogous to ‘layers’, and provide blending capabilities. This can be extended to provide ‘Animation Layers’ functionality.

Each track can contain multiple strips. Within a track, strips can occur in sequence but not simultaneously.

Each strip references an Action, allowing one way of reusing animation information. Strips also contain local F-Curves for tweaking the ‘Action-Time’ and/or influence of the strip for blending

NLA Track

NLA Strip

NLA Strip

NLA Strip

NLA Strip

NLA Track

etc.

Frame Changed

Data Changed

Event

Affected Data

Animation Evaluation

i.e. UI setting changed, transforms, etc.

animation playback, changing frames in UI, rendering animations,

file read (+ undo?)

Action Group

ID types with more users evaluated first

Main

All ID-datablocks with AnimData

(indicated with green shading)

ID types with fewer users evaluated last

For each AnimData block:

If enabled, NLA/Animation Layers are evaluated, with results being accumulated between layers

Active Action is evaluated on top of NLA results

If AnimData is ‘higher up’ in hierarchy (i.e. type with fewer users, previously executed results are overwritten

Tex

Tex

Tex

Sce

Ma

Ma

Ob

Ob

Ob	

La

For each AnimData in Ob/ObData:

Evaluate drivers, which should be ordered so that there are no local lags

Evaluate constraints, etc. that use the settings that were set by Animation/Drivers

Objects should have been ordered in such a way that drivers between Objects/Ob-Data should work without lagging.

[image: image3.emf]

- Actions contain a list of F-Curves which can be reused together as a group, which make Actions similar to the old IPO’s (but without the single ID-block/blocktype limitation). - The only limitation regarding the contents of an Action is that all the F-Curves can only affect settings which can be accessed directly from the ID-block which owns the AnimData the Action is attached to. - F-Curves can be arbitrarily grouped using Action Groups, which only serve aesthetic and organisational purposes. - The active action acts as the ‘tweaking track’ for the NLA results -

