From BlenderWiki

Jump to: navigation, search

The most flexible way of mapping a 2D texture over a 3D object is a process called "UV mapping". In this process, you take your three-dimensional (X,Y & Z) mesh and unwrap it to a flat two-dimensional (X & Y ... or rather, as we shall soon see, "U & V") image. Colors in the image are thus mapped to your mesh, and show up as the color of the faces of the mesh. Use UV texturing to provide realism to your objects that procedural materials and textures cannot do, and better details than Vertex Painting can provide.

UV Explained

Box being inspected
Box mapped flat

The best analogy to understanding UV mapping is cutting up a cardboard box. The box is a three-dimensional (3D) object, just like the mesh cube you add to your scene.

If you were to take a pair of scissors and cut a seam or fold of the box, you would be able to lay it flat on a tabletop. As you are looking down at the box on the table, we could say that U is the left-right direction, is V is the up-down direction. This image is thus in two dimensions (2D). We use U and V to refer to these "texture-space coordinates" instead of the normal X and Y, which are always used (along with Z) to refer to "3D space."

When the box is reassembled, a certain UV location on the paper is transferred to an (X,Y,Z) location on the box. This is what the computer does with a 2D image in wrapping it around a 3D object.

During the UV unwrapping process, you tell Blender exactly how to map the faces of your object (in this case, a box) to a flat image in the UV/Image Editor window. You have complete freedom in how to do this. (Continuing our previous example, imagine that, having initially laid the box flat on the tabletop, you now cut it into smaller pieces, somehow stretch and/or shrink those pieces, and then arrange them in some way upon a photograph that's also lying on that tabletop ...)

Cartography Example

Cartographers (map makers) have been dealing with this problem for millennia. A cartography (map-making) example is creating a projection map of the whole world. In cartography, we take the surface of the earth (a sphere) and make a flat map that can be folded up into the glove compartment aboard the space shuttle. We 'fill in' spaces toward the poles, or change the outline of the map in any of several ways:

Mercator Projection
Mollweide Projection
Albers-equal Projection

Each of these is an example of a way to UV map a sphere. Each of the hundred or so commonly accepted projections has its advantages and disadvantages. Blender allows us to do the same thing any way we want to, on the computer.

On more complex models (like seen in the earth map above) there pops up an issue where the faces can't be 'cut', but instead they are stretched in order to make them flat. This helps making easier UV maps, but sometimes adds distortion to the final mapped texture. (Countries and states that are closer to the North or the South Pole look smaller on a flat map than do ones which are close to the Equator.)

Half-Sphere Example

3D Space (XYZ) versus UV Space (click to enlarge)

In this image you can easily see that the shape and size of the marked face in 3D space is different in UV space.

This difference is caused by the 'stretching' (technically called mapping) of the 3D part (XYZ) onto a 2D plane (i.e the UV map).

If a 3D object has a UV map, then, in addition to the 3D-coordinates X, Y, and Z, each point on the object will have corresponding U and V coordinates. (P in the image above is an example of how a point on a 3D object might be mapped onto a 2D image.)

Advantages

While procedural textures (described in the previous chapters) are useful - they never repeat themselves and always "fit" 3D objects - they are not sufficient for more complex or natural objects. For instance, the skin on a human head will never look quite right when procedurally generated. Wrinkles on a human head, or scratches on a car do not occur in random places, but depend on the shape of the model and its usage. Manually-painted images, or images captured from the real world gives more control and realism. For details such as book covers, tapestry, rugs, stains, and detailed props, artists are able to control every pixel on the surface using a UV Texture.

A UV map describes what part of the texture should be attached to each polygon in the model. Each polygon's vertex gets assigned to 2D coordinates that define which part of the image gets mapped. These 2D coordinates are called UVs (compare this to the XYZ coordinates in 3D). The operation of generating these UV maps is also called "unwrap", since it is as if the mesh were unfolded onto a 2D plane.

For most simple 3D models, Blender has an automatic set of unwrapping algorithms that you can easily apply. For more complex 3D models, regular Cubic, Cylindrical or Spherical mapping, is usually not sufficient. For even and accurate projection, use seams to guide the UV mapping. This can be used to apply textures to arbitrary and complex shapes, like human heads or animals. Often these textures are painted images, created in applications like the Gimp, Photoshop, or your favorite painting application.

Games
UV mapping is also essential in the Blender game engine, or any other game. It is the de facto standard for applying textures to models; almost any model you find in a game is UV mapped.



Introduction
What is Blender?
Introduction
Blender’s History
License
Blender’s Community
About this Manual
What's changed with Blender 2.4
Installing Blender
Introduction
Python
Installing on Windows
Installing on GNU/Linux
Installing on Mac
Installing on other Operating Systems
Configuring Blender
Directory Layout
Starting
The Interface
Introduction
Keyboard and Mouse
Window System
Arranging frames
Headers
Console window
Window Types
Screens (Workspace Layouts)
Scenes
Configuration
Modes
Contexts
Menus
Panels
Buttons and Controls
Internationalization
Your First Animation
1/2: A static Gingerbread Man
2/2: Animating the Gingerbread Man
The Vital Functions
Quick render
Undo and Redo
Default scene
Screenshots
Help!
Setting Preferences
Configuring Preferences
Interface
Editing
Themes
File
System
Interaction in 3D
Introduction
Introduction
Navigation
Introduction
3D View
3D View Options
3D View Usage
Camera View
Layers
Local or Global View
Sketch in 3D Space
Introduction to Grease Pencil
Drawing sketches
Layers and Animation
Converting sketches to geometry
Transformations
Introduction
Basics
- Grab/Move
- Rotate
- Scale
- Gestures
Advanced
- Mirror
- To Sphere
- Shear
- Warp
- Push/Pull
Transform Control
Introduction
Precision of Transformations
Numeric Transformations
Transform Properties
Reset Object Transforms
Manipulators
Transform Orientations
Axis Locking
Pivot Point
- Active object
- Individual Centers
- 3D Cursor
- Median Point
- Bounding Box Center
Snapping
Snap to Mesh
Proportional Edit
Data System and Files
Blender's Data System
Blender's Library and Data System
Blender's Datablocks
Scenes
Working with Scenes
The Outliner Window
Appending and Linking
File operations
Introduction
Opening blender files
Saving blender files
Modeling
Introduction
Introduction
Objects
Objects
Selecting Objects
Editing Objects
Groups and Parenting
Tracking
Duplication
- DupliVerts
- DupliFaces
- DupliGroup
- DupliFrames
Mesh Objects
Meshes
- Mesh Structures
- Mesh Primitives
Selecting
- Selectable Elements
- Selection Basics
- Advanced Selecting
- Selecting Edges
- Selecting Faces
Editing
Basic Editing
- Translation, Rotation, Scale
- Adding Elements
- Deleting Elements
- Creating Faces and Edges
- Mirror editing
Vertex Editing
Edge Editing
Face Editing
Deforming Tools
- Mirror
- Shrink/Fatten Along Normals
- Smooth
- Noise
Duplicating Tools
- Duplicate
- Extrude
- Extrude Dup
- Spin
- Spin Dup
- Screw
Subdividing Tools
- Subdivide
- Subdivide fractal
- Subdivide smooth
- Loop Subdivide
- Knife Subdivide
- Bevel
Miscellaneous Tools
Retopo Tool
Sculpt Mode
Multi Resolution Mesh
Vertex Groups
Weight Paint
Mesh Smoothing
Curve Objects
Curves
Selecting
Editing
Advanced Editing
Surface Objects
Surfaces
Selecting
Editing
Text Objects
Texts
Editing
Meta Objects
Metas
Editing
Empty Objects
Empties
Group Objects
Groups
Scripts
Modeling Scripts
Modifiers and Deformation
Introduction
Introduction
Modifiers Stack
Modify
UVProject
Generate
Array
Bevel
Booleans
Build
Decimate
EdgeSplit
Mask
Mirror
Subsurf
Deform
Armature
Cast
Curve
Displace
Hooks
Lattice
MeshDeform
Shrinkwrap
SimpleDeform
Smooth
Wave
Simulate
Cloth
Collision
Explode
Fluid
Particle Instance
Particle System
Soft Body
Lighting
Introduction
Introduction
Lights
Introduction
Light Properties
Light Attenuation
Light Textures
What Light Affects
Lights In Other Contexts
Shadows
Introduction
Shadow Properties
Raytraced Shadow Properties
Volumetric Lights
Introduction
Lamps
Introduction
Lamp Light
- Raytraced Shadows
Spot Light
- Raytraced Shadows
- Buffered Shadows
- Halos
Area Light
- Raytraced Shadows
Hemi Light
Sun Light
- Raytraced Shadows
- Sky & Atmosphere
Lighting Rigs
Radiosity
Introduction
Rendering
Baking
Scene Light
Ambient Light
Ambient Occlusion
Exposure
Exposure
Materials
Introduction
Introduction to Shading
Materials Introduction
Usage
Assigning a material
Material Preview
Material Options
Multiple Materials
Properties
Diffuse Shaders
Specular Shaders
Ambient Light Effect
Color Ramps
Raytraced Reflections
Raytraced Transparency
Subsurface Scattering (SSS)
Strands
Node Materials
Material Nodes
Nodes Editor
Node Controls
Nodes usage
Nodes Groups
Material Node Types
- Input Nodes
- Output
- Color
- Vector
- Convertor
- Dynamic
Vertex Paint
Using Vertex Paint
Halos
Halos
Textures
Introduction
Introduction
UV/Image Editor
Common Options
Texture Stack
Texture Types
Texture Types
Procedural Textures
Image Textures
Video Textures
Texture Nodes
- Nodes Editor
- Node Controls
- Nodes usage
- Nodes Groups
-- Textures Input Nodes
-- Textures Output Nodes
-- Textures Color Nodes
-- Textures Patterns Nodes
-- Textures Textures Nodes
-- Textures Convertor Nodes
-- Textures Distort Nodes
Texture Plugins
Texture Painting
Painting the Texture
- Projection Paint
Mapping
Mapping
Environment Maps
UV Unwrapping Explained
- Unwrapping a Mesh
- Managing the UV Layout
- Editing the UV Layout
- Applying an Image
Influence
Influence
- Material
-- Bump and Normal
-- Displacement
- Particles
- World
World and Ambient Effects
World
Introduction
World Background
Ambient Effects
Mist
Stars
Rigging
Introduction
Introduction to Rigging
Armatures
Armature Objects
Panels overview
Bones
Visualization
Structure
Selecting
Editing
- Bones
- Properties
- Sketching
- Templating
Skinning
Introduction
Linking Objects to Bones
Skinning to Objects’ Shapes
Retargeting
Posing
Introduction
Visualization
Editing Poses
Pose Library
Using Constraints
Inverse Kinematics
Constraints
Introduction
Introduction
Constraints Common Interface
Constraints’ Stack
Transform Constraints
Copy Location
Copy Rotation
Copy Scale
Limit Distance
Limit Location
Limit Rotation
Limit Scale
Transformation
Tracking Constraints
Clamp To
IK Solver
Locked Track
Stretch To
Track To
Relationship Constraints
Action
Child Of
Floor
Follow Path
Null
Rigid Body Joint
Script
Shrinkwrap
Animation
Introduction
Introduction
The Timeline
Markers
3D Views
Animation Editors
Animation Editors
Ipo Editor
Ipo Curves and Keyframes
Ipo Datablocks
Ipo Types
Ipo Editor Interface
Editing
- Ipo Curves
- Keyframes
Ipo Drivers
Action Editor
Editing Action Channels
NLA Editor
Editing NLA Strips
Strip Modifiers
Animation Techniques
Introduction
Animating Objects
- Using Constraints
- Moving Objects on a Path
Animating Shapes
- Shape Keys
- Editing Shape Keys
- Animating Shape Keys
- Shape Keys Examples
Indirect Shape Animation
Animating Armatures
- Stride
Animating Lamps
Animating Cameras
Animating Materials
Animating Textures
Animating World
Physical Simulation
Introduction
Introduction
Dynamics
Force Fields
Collisions
Particles
Particles
Types
Physics
- Newtonian
- Keyed
- Boids
Visualization
Controlling Emission, Interaction and Time
Cache & Bake
Hair
Children
Vertex Groups
Particle Mode
Soft Body
Introduction
Exterior Forces
Interior Forces
Collisions
Simple Examples
Combination with Armatures
Combination with Hair Particles
Reference
Cloth
Introduction
Fluids
Fluid
Using the Game Engine
Using the Game Engine
Rendering
Introduction
Introduction
Camera
The Camera
Perspective (Vanishing points)
Depth Of Field
Render
Displaying Renders
Basic Options
Antialiasing (Oversampling)
Rendering Animations
Panoramic
Render Baking
Using the Command Line
Output
Output
Video Output
Effects and Post Processing
Introduction
Render Layers
Render Passes
Edges & Toon
Stamp
Color Management & Exposure
Depth Of Field
Motion Blur
Render Performance
Rendering Performance
Distributed Rendering
External Render Engines
Introduction
YafRay
Compositing with nodes
Composite Nodes
Introduction
Nodes Editor
Node Controls
Nodes usage
Nodes Groups
Composite Node types
Composite Node types
Input Nodes
Output Nodes
Color Nodes
Vector Nodes
Filter Nodes
Convertor Nodes
Matte Nodes
Distortion Nodes
Editing Sequences
Introduction
Introduction
The sequencer
Usage
Sequencer Modes
Sequence Screen Layout
Effects
Built-in Effects
Plugin Effects
Audio
Audio Sequences
Extending Blender
Introduction
Introduction
Python Scripting
Python Scripting in Blender
Setting up Python
The Text Editor
A working example
References
Python Scripts
Script Catalog
Bundled Scripts
Plugins
Blender's Plugins System
Texture plugins specifications
Sequence plugins specifications
Game Engine
Introduction
Introduction
The Logic Editor
Usage
Game Properties
Sensors
Introduction
Sensor Types
Controllers
Introduction
Expressions
Actuators
Introduction
Action
Camera
CD
Constraint
Edit Object
Ipo
2D Filters
Game
Message
Motion
Parent
Property
Random
Scene
Shape Action
Sound
State
Visibility
Cameras
Cameras
Dome Camera
Physics
Physics Engine
Material Physics
Object Types
- Static
- No Collision
- Dynamic
- Rigid Body
- Soft Body
- Occluder
- Sensor
Python API
Bullet physics
VideoTexture
Various resources
List of Features
External resources
Game Engine Basics (BSoD Tutorial)
FAQ